Business Review


Time series analysis has attracted a lot of attention of researchers in recent times due to availability of sophisticated computing facilities. In this paper wavelet transformation and seasonal ARIMA methodology have been used to analyze and forecast time series. First we analyze time series data for gas demand of Sui southern Gas Company (SSGC) of Pakistan and forecast with Box-Jenkins SARIMA models then we look at waveletbased multiresolution analysis (MRA) and SARIMA models predictions using the compressed and de-noised signals. With the right choice of mother wavelets, this method is very successful in analyzing and forecasting time series. In the later part of this paper we compare forecast performance of the three models in consideration.


Time Series Analysis, SARIMA, Wavelets, Multiresolution Analysis



Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Published Online

February 19, 2021

Included in

Economics Commons



Publication Stage



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.