All Theses and Dissertations
Degree
Master of Science in Mathematics
Department
Department of Mathematical Sciences
Date of Award
Spring 2020
Advisor
Dr. Danish Ali
Committee Member 1
Dr. Absar-ul-Haq, Institute of Business Administration, Karachi
Committee Member 2
Dr. Najma Abdul Rehman, Institute of Business Administration, Karachi
Committee Member 3
Dr. Hisham Bin Zubair, Institute of Business Administration, Karachi
Project Type
Thesis
Access Type
Restricted Access
Pages
vii, 54
Keywords
Abstract
Twistor Space was first described by Roger Penrose and Malcolm MacCallum in the 1960s. Let (N, h) be an oriented Riemannian 4-manifold" then twistor space of (N, h) is the two-sphere subbundle W of A~T N which has an l-parameter family of Riemannian metric gr. The Ricci curvature of (W, gt) was defined in [9]. In [6], G. Deschamps defined almost complex (a.c) structures 3j on a manifold W of dimension 6 under a fiber preserving morphism j: W ---7 W of the bundle W such that n 0 j = Jr. The Ricci tensor of the twistor space of an almost Hermitian Riemannian 4-manifold was also discussed w.r.t an a.c structure. defined with the help of the morphism j: W ---7 Wand a sectionj3 E A2T N in [10] which is a particular case of the arbitrary morphism f. In this dissertation, I studied the Ricci tensor of (W, gt) and the conditions in which the Ricci tensor of twistor space with almost Hermitian base manifold is also Hermitian correspond to the a.c structure 5. Furthermore, we can also explore the conditions for the Ricci tensor of (W, gt) to be Hermitian corresponding to the complex structure 3) defined under an arbitrary fiber preserving map from the twistor space W to W. Tags from this library: No tags from this library for this title.
Link to Catalog Record
https://ils.iba.edu.pk/cgi-bin/koha/opac-detail.pl?biblionumber=109785
Recommended Citation
Amer, H. R. (2020). Hermitian Ricci Tensor of Twistor Space (Unpublished master's thesis). Institute of Business Administration, Pakistan. Retrieved from https://ir.iba.edu.pk/etd/22
The full text of this document is only accessible to authorized users.