Title

Artificial Intelligence – I: A new hybrid agent-based modeling & simulation decision support system for breast cancer data analysis

Abstract/Description

In this paper, we present a novel technique of building hybrid decision support systems which integrates traditional decision support systems with agent based models for use in breast cancer analysis for better prediction and recommendation. Our system is based on using queries from data (converted to a standardized electronic template) to provide for simulation variables in an agent-based model. The goal is to develop an ICT tool to assist non-specialist biologist researcher users in performing analysis of large amounts of data by applying simple simulation techniques. To demonstrate the effectiveness of this novel decision support system, an extensive breast cancer data collection exercise was carried out with the support of Hospitals in a previously unexplored region. The collected data was subsequently integrated in an electronic medical record filing system for patients. We also demonstrate the application of agent based modeling and simulation techniques for building simulation models of tumor growth and treatment. Our proposed decision support system also provides a comprehensive query tool which facilitates the use of retrieved data in statistical tools 2 for subsequent interpretation and analysis.

Session Theme

Artificial Intelligence – I

Session Type

Other

Session Chair

Dr. Sajjad Haider

Start Date

15-8-2009 3:05 PM

End Date

15-8-2009 3:25 PM

Share

COinS
 
Aug 15th, 3:05 PM Aug 15th, 3:25 PM

Artificial Intelligence – I: A new hybrid agent-based modeling & simulation decision support system for breast cancer data analysis

In this paper, we present a novel technique of building hybrid decision support systems which integrates traditional decision support systems with agent based models for use in breast cancer analysis for better prediction and recommendation. Our system is based on using queries from data (converted to a standardized electronic template) to provide for simulation variables in an agent-based model. The goal is to develop an ICT tool to assist non-specialist biologist researcher users in performing analysis of large amounts of data by applying simple simulation techniques. To demonstrate the effectiveness of this novel decision support system, an extensive breast cancer data collection exercise was carried out with the support of Hospitals in a previously unexplored region. The collected data was subsequently integrated in an electronic medical record filing system for patients. We also demonstrate the application of agent based modeling and simulation techniques for building simulation models of tumor growth and treatment. Our proposed decision support system also provides a comprehensive query tool which facilitates the use of retrieved data in statistical tools 2 for subsequent interpretation and analysis.