Cluster analysis of urdu tweets
Faculty / School
Faculty of Computer Sciences (FCS)
Department
Department of Computer Science
Was this content written or created while at IBA?
Yes
Document Type
Article
Source Publication
Journal of King Saud University - Computer and Information Sciences
ISSN
1319-1578
Keywords
Document clustering, Document embeddings, Feature extraction methods, Topic modelling, Unsupervised learning, Urdu language processing
Disciplines
Computer Sciences
Abstract
Document clustering allows a user to group semantically similar documents. It has been an interesting research area for the past many years and various methods and techniques have been developed. However, the research has primarily been limited to English and other high resource languages. For low-resource languages, such as Urdu, the area of document clustering is open to contributions. This work presents an experimental evaluation of clustering techniques on Urdu tweets. It is a challenging task to semantically cluster tweets due to their very short length. In this paper, various features, including sentence and phrase-level embeddings, TF-IDF features and document embeddings are extracted from tweets and clustering is performed using three different algorithms: K-Means, Bisecting K-Means, and Affinity Propagation algorithms. Furthermore, a comparison is performed with the traditional topic modeling approach. The results indicate that the TF-IDF features combined with the K-means clustering algorithm outperformed the adopted clustering techniques.
Indexing Information
HJRS - W Category, Scopus, Web of Science - Science Citation Index Expanded (SCI)
Journal Quality Ranking
Impact Factor: 13.473
Recommended Citation
Nasim, Z., & Haider, S. (2020). Cluster analysis of urdu tweets. Journal of King Saud University - Computer and Information Sciences Retrieved from https://ir.iba.edu.pk/faculty-research-articles/95
Publication Status
Published
COinS