Information-theoretic measures and modeling stock market volatility: a comparative approach
Faculty / School
School of Mathematics and Computer Science (SMCS)
Department
Department of Mathematical Sciences
Was this content written or created while at IBA?
Yes
Document Type
Article
Source Publication
Risks
ISSN
2227-9091
Keywords
Approximate entropy, GARCH processes, Randomness, Sample entropy, Shannon entropy, Tsallis entropy, Volatility
Disciplines
Accounting | Business | Business Administration, Management, and Operations | Econometrics | Economics | Finance
Abstract
The volatility analysis of stock returns data is paramount in financial studies. We investigate the dynamics of volatility and randomness of the Pakistan Stock Exchange (PSX-100) and obtain insights into the behavior of investors during and before the coronavirus disease (COVID-19 pandemic). The paper aims to present the volatility estimations and quantification of the randomness of PSX-100. The methodology includes two approaches: (i) the implementation of EGARCH, GJR-GARCH, and TGARCH models to estimate the volatilities; and (ii) analysis of randomness in volatilities series, return series, and PSX-100 closing prices for pre-pandemic and pandemic period by using Shannon’s, Tsallis, approximate and sample entropies. Volatility modeling suggests the existence of the leverage effect in both the underlying periods of study. The results obtained using GARCH modeling reveal that the stock market volatility has increased during the pandemic period. However, information-theoretic results based on Shannon and Tsallis entropies do not suggest notable variation in the estimated volatilities series and closing prices. We have examined regularity and randomness based on the approximate entropy and sample entropy. We have noticed both entropies are extremely sensitive to choices of the parameters.
Indexing Information
HJRS - X Category, Scopus, Web of Science - Emerging Sources Citation Index (ESCI)
Recommended Citation
Sheraz, M., & Nasir, I. (2021). Information-theoretic measures and modeling stock market volatility: a comparative approach. Risks, 9 (5), 1-20. Retrieved from https://ir.iba.edu.pk/faculty-research-articles/154
Publication Status
Published
COinS