Abstract/Description

Using hexagonal grids to represent digital images have been studied for more than 40 years. Increased processing capabilities of graphic devices and recent improvements in CCD technology have made hexagonal sampling attractive for practical applications and brought new interests on this topic. The hexagonal structure is considered to be preferable to the rectangular structure due to its higher sampling efficiency, consistent connectivity and higher angular resolution and is even proved to be superior to square structure in many applications. Since there is no mature hardware for hexagonal-based image capture and display, square to hexagonal image conversion has to be done before hexagonal-based image processing. Although hexagonal image representation and storage has not yet come to a standard, experiments based on existing hexagonal coordinate systems have never ceased. In this paper, we firstly introduced general reasons that hexagonally sampled images are chosen for research. Then, typical hexagonal coordinates and addressing schemes, as well as hexagonal based image processing and applications, are fully reviewed.

Location

Crystal Ball Room A, Hotel Pearl Continental, Karachi, Pakistan

Session Theme

Keynote Speeches

Session Type

Keynote Speech

Start Date

27-8-2005 12:30 PM

End Date

27-8-2005 1:30 PM

Share

COinS
 
Aug 27th, 12:30 PM Aug 27th, 1:30 PM

Keynote: Hexagonal structure for intelligent vision

Crystal Ball Room A, Hotel Pearl Continental, Karachi, Pakistan

Using hexagonal grids to represent digital images have been studied for more than 40 years. Increased processing capabilities of graphic devices and recent improvements in CCD technology have made hexagonal sampling attractive for practical applications and brought new interests on this topic. The hexagonal structure is considered to be preferable to the rectangular structure due to its higher sampling efficiency, consistent connectivity and higher angular resolution and is even proved to be superior to square structure in many applications. Since there is no mature hardware for hexagonal-based image capture and display, square to hexagonal image conversion has to be done before hexagonal-based image processing. Although hexagonal image representation and storage has not yet come to a standard, experiments based on existing hexagonal coordinate systems have never ceased. In this paper, we firstly introduced general reasons that hexagonally sampled images are chosen for research. Then, typical hexagonal coordinates and addressing schemes, as well as hexagonal based image processing and applications, are fully reviewed.