

iRepository

1st International Conference on Economics and Sustainable Development Conference 2021

**CBER Conference** 

Apr 3rd, 4:00 PM - 5:30 PM

#### Alternate energy as a sustainable energy resource in Pakistan

Sassi Bhutto SZABIST Karachi

Riaz Ahmed Shaikh SZABIST Karachi

Riffat Abdul Latif Mughal SZABIST Karachi

Follow this and additional works at: https://ir.iba.edu.pk/esdcber

Part of the Economics Commons

#### **iRepository Citation**

Bhutto, S., Shaikh, R. A., & Mughal, R. A. (2021). Alternate energy as a sustainable energy resource in Pakistan. CBER Conference. Retrieved from https://ir.iba.edu.pk/esdcber/2021/day2/16

This document is brought to you by *iRepository*. For more information, please contact irepository@iba.edu.pk.

https://ir.iba.edu.pk/esdcber/2021/day2/16





Institute of Business Administration

# 1<sup>st</sup> International Conference, CBER IBA

# Alternate Energy as a Sustainable Energy Resource in Pakistan Session: Parallel Technical Session III Date: 3<sup>rd</sup> April, 2021 at 4:00 PM

Authors: Sassi Bhutto (PhD Scholar at SZABIST) Prof. Dr. Riaz Ahmed Shaikh (Dean, SZABIST) Ms. Riffat Mughal (PhD Scholar at SZABIST)





### Table of Contents

**Introduction** – What are alternative energy sources and what is Pakistan's potential.

Rationale of the study – Research Gap.

Literature Review – Taking current and future needs into account.

Proposed Model – ARDL Model

Data – World Bank data bank from 1971 till 2019 and internal resources of FBR

**Data Visualization –** Tables

Findings – Alternate Energy as a Sustainable Energy Resource in Pakistan

**Conclusion and Recommendations –** stakeholders identified

**Drawback of the study** – Limited resources and funds for gathering information on a larger scale





#### Introduction

Renewable energy  $\rightarrow$  'replenished by nature'

Alternate Energy  $\rightarrow$  Renewable + Sources of energy (nuclear and biomass) not renewable but abundantly present.

Europe heavily depended on fossil fuels (Grosskopf, 2011)  $\rightarrow$  not blessed with abundance  $\rightarrow$  depend heavily on oil imports.

So it invested in renewable energy  $\rightarrow$  solved the energy crisis and created thousands of jobs as well.

### Asia

China has exceeded the U.S. in total electric power generation capacity which is 1234  $Gw_e$  (IRENA, 2014). India could rely completely on renewable energy by 2050 (Pant, 2015)

#### Pakistan

The fuel imports of Pakistan account to \$10.6 billion per annum (Khan, 2020) with around 0.76 wells per 1000 kilometer-square of area (Doggar, 2011). The natural gas reserves are rapidly diminishing.

Reliance on fossil fuels  $\rightarrow$  Pakistan, far from achieving sustainable development goal to protect the environment.

Published by iRepository, 2021





#### Rationale of the study

- Researchers have emphasized that renewable energy is the solution for Pakistan's energy problem.
- However, there has been very little empirical analysis as to why the traditional form of energy is not as efficient as renewable or alternate.
- This paper in its first part of analysis presents the empirical evidence that traditional form energy using perishable resources such as fossil fuel is no longer efficient, environmentally hazardous and very costly.
- ✓ The second part is a discussion on alternate energy option for Pakistan





#### **Literature Review**

Developing countries contribute more to the environmental degradation because of their unsustainable practices (Khalil, 2015; Raupach, et al. 2007).

Khalil (2015) claims that continuation of current development strategies is not enough to achieve sustainable development goals.

Mehmood and Ayaz (2018) realize the real cause of energy supply-demand gap is the in the process.

The current energy security (energy supply-demand gap) issue in Pakistan can be resolved in two ways: by increasing energy efficiency or by using renewable energy sources (such as solar, wind and thermal)

the former is demand focused solution which is neither permanent nor sustainable given the unresolved circular debt issue due to changing political situation in the country and prevalent corruption.

A more sustainable approach towards it would be to switch to the renewable energy sources.





#### **Literature Review**

The energy deficit in Pakistan cannot be denied (Mehmood & Ayaz, 2018).

Here are some stats on how far we are from resolving the energy deficit:

≻The supply and demand gap for power ranges from 5000 MWs to over 6000 MWs.

≻Around Rs. 253bn of GDP was lost in 2015 owing to power shortage (Shahbaz, 2019)<sup>1</sup>.

➤A 29 percent of energy shortage by the year 2021 apprehended given the current situation demand and supply gap.

Can alternate energy be a solution for Pakistan? What is the potential of Wind and Solar Energy in Pakistan? ➤ The wind potential of Gharo-Keti Bandar Wind Corridor → around 50,000 MW power generation capacity (Khan, 2013).

➤ the future of renewable energy in Pakistan is such that it will attract foreign investors to invest in Pakistan. FBR data (Tax exemptions for wind and solar power generating companies u/s 126I for 5 yrs)
 ➤ Use of Solar powered tube-wells has improved agriculture in various villages in Sindh (Aazim, 2014)

1. Currently, Pakistan faces a cumulated loss of about Rs. 5 trillion (Malik, 2020). An update on circular debt due to non payment for FY20: Rs. 2150 bn as per senate standing committee on power.





#### **Literature Review**

Can nuclear energy be an option for Pakistan?

Often under the banner of finding a clean energy alternative to meet growth objectives, some international organizations such as International Atomic Energy Agency (IAEA) and United States Department of Energy

deem it a sustainable option (IAEA, 2019; USDOE, 2020).

Pakistan has shown interest in this exposition.

Experts have advised against it (Houdbhouy, 2015; Stephan & Tynan, 2010).

'Let's go nuclear, safely'  $\rightarrow$  120000 of Fukushima could flee but 20 million of Karachi will not be able to.





#### **Proposed Model**

$$\begin{split} \Delta lco2kt_t &= \alpha_{01} + b_{11}lco2kt_{t-i} + b_{21}gdp\_growth_{t-i} + b_{31}lfossil\_cons_{t-i} \\ &+ b_{41}lrenewable\_energy_{t-1} \\ &+ \sum_{i=1}^{p} \alpha_{1j}\Delta lco2kt_{t-i} + \sum_{i=1}^{q1} \alpha_{2j}\Delta gdp\_growth_{t-i} \\ &+ \sum_{i=1}^{q2} \alpha_{3j}\Delta lfossil\_cons_{t-i} + \sum_{i=1}^{q3} \alpha_{4j}\Delta lrenewable\_energy_{t-1} + e_{1t} \end{split}$$

- ✓ Co2kt represents carbon emissions in kilo tons.
- ✓ Gdp\_growth shows GDP growth rate of Pakistan
- ✓ Fossil\_cons is fossil fuel consumption (includes oil, natural gas, coal and petroleum), and
- Renewable\_energy is the alternate Energy (Renewable resources such as solar, geothermal and wind along with nuclear energy)





Institute of Business Administration

Data

✓ Data – World Bank database from 1971 till 2019 and internal resources of FBR





Lag(1)

1.0000

0.1098

0.0000

0.0038

0.4018

0.1719

0.0037

0.2722

0.1447

Lag(0)

1.0000

0.8901

0.0000

0.0000

0.5239

0.3083

0.0000

0.2774

0.1706

Institute of Business Administration

#### Data Visualization

#### Table 1: Correlation

| Variables        | co2kt   | gdp_growth | fossil_cons | renewable_energy |
|------------------|---------|------------|-------------|------------------|
| co2kt            | 1       |            |             |                  |
| gdp_growth       | -0.2717 | 1          |             |                  |
| fossil_cons      | 0.9127  | -0.2007    | 1           |                  |
| renewable_energy | 0.3374  | 0.384      | 0.263       | 1                |

#### Table 4. Descriptive Statistics

| Variable         | Obs | Mean     | Std. Dev. | Min      | Max      |
|------------------|-----|----------|-----------|----------|----------|
|                  |     |          |           |          |          |
| co2kt            | 46  | 89256.06 | 56372.78  | 18929.05 | 201149.6 |
| gdp_growth       | 49  | 4.702315 | 2.163922  | 0.468373 | 10.2157  |
| fossil_cons      | 44  | 51.09622 | 9.108872  | 35.29485 | 62.47639 |
| renewable_energy | 44  | 3.067167 | 0.563844  | 1.963702 | 4.032139 |

| Table 3. Mode          | estinaatioa_ | energy       | 0.0000            | 0.0000              |
|------------------------|--------------|--------------|-------------------|---------------------|
| Dependent<br>variables | F-statistics | t-statistics | Cointegrat<br>ion | Model<br>Estimation |
| lco2kt                 | 1.074        | -0.581       | No                | ARDL                |
| gdp_growth             | 8.897        | -2.708       | Yes               | ECM Model           |
| lfossil_cons           | 4.045        | -1.289       | inconclusiv<br>e  | inconclusive        |
| Irenewable_energy      | 5.237        | -1.567       | inconclusiv<br>e  | inconclusive        |

 $\Delta lco2kt_{t} = \alpha_{01} + b_{11}lco2kt_{t-i} + b_{21}gdp\_growth_{t-i} + b_{31}lfossil\_cons_{t-i} + b_{41}lrenewable\_energy_{t-1} + Published by isologicary, 2021 o2kt_{t-i} + \sum_{i=1}^{q1} \alpha_{2j}\Delta gdp\_growth_{t-i} + \sum_{i=1}^{q2} \alpha_{3j}\Delta lfossil\_cons_{t-i} + \sum_{i=1}^{q3} \alpha_{4j}\Delta lrenewable\_energy_{t-1} + e_{1t}$ 

# Table 2. Lag

Variables

co2kt

lco2kt

d.lco2kt

gdp\_growth

fossil\_cons

Ifossil cons

dlfossil cons

renewable\_energy

Irenewable\_energy





#### Findings

- ARDL regression model results are shown in Appendix A. The results states that Ico2kt at lags 1 and 2 are significant at 1% and 5% significance level along with 0.723 and 0.253 coefficients.
- Further, GDP growth at lag 2 has significant impact with increase of 0.004 in CO2 emissions in Pakistan.
- The fossil fuel has significant impact on CO2 emissions with (p-value <0.01) showing the consumption of nonrenewable resources are contributing 0.78 or 78% in CO2 which is damaging the environment and affecting climate. The renewable energy does not have significant impact in carbon dioxide emission in Pakistan.
- The ARDL model executed showed that in Pakistan, non-renewable energy consumption has significantly contributed in CO2 emission which is not a good indicator.
- Hence, the government of Pakistan must take serious actions for the use of renewable energy so that climate and the planet can be saved.





## Conclusion and recommendations

- The data analysis and discussion paint a lucid picture of the current energy crisis in Pakistan and present viable solutions to the problem.
- The discussion has presented that the economy has faced huge loss because of the power shortage, damaging all sectors of the economy.
- Alternate source like Nuclear power is untested and dangerous but other forms of energy resources like wind and solar seem a viable option for Pakistan.
- The empirical analysis shows that fossil fuel affects the environment negatively.
- The amount of dollars Pakistan spends on oil import and extraction or electricity generation through traditional means could be utilized for investing in tapping the renewable energy sources for which cooperation on part of the government is vital.
- Subsidies to businesses and various tax advantages will further encourage private corporations to venture into clean energy to cater the current energy crisis in Pakistan.





Institute of Business Administration

#### Drawback of the study

Limited data on Renewable energy Short run results Limited resources





Institute of Business Administration

#### References

Aazim, M., 2014, Focus on energy, Dawn, Retrieved from http://www.dawn.com/news/1152289/focus-on-green-energy

AEDB, 2020, Current status of wind power projects. Alternate Energy Development Board, Retrieved from <a href="http://www.aedb.org/ae-technologies/wind-power/wind-current-status">http://www.aedb.org/ae-technologies/wind-power/wind-current-status</a>

Amjid, S. S., Bilal, M. Q., Nazir, M. S., and Hussain, A., 2011, Biogas, renewable energy resource for Pakistan, Renewable and Sustainable Energy Reviews, 15(6): 2833-2837.

Bacha, H. A., 2014, People in KP, Fata turning to solar energy, Dawn. Retrieved from http://www.dawn.com/news/1122967/people-in-kp-fata-turning-to-solar-energy

Doggar, M. (2011). Prospects and Potential of Renewable Energy Resources in Pakistan. International Centre of Development and Decent Work. Retrieved from http://icdd.uaf.edu.pk/Events/presentations/111124/002.pdf

Ebrahim, T. Z. (2015). Pakistan's Nuclear Energy Plans. Dawn. Retrieved from http://www.dawn.com/news/1170383/pakistans-nuclear-energy-plans-qa-with-physicist-abdul-h-nayyar

Government of Pakistan [GOP] (2014). Pakistan 2025, Planning Commission of Pakistan. Retrieved from http://pakistan2025.org/wp-content/uploads/2014/08/Pakistan-Vision-2025.pdf

Grosskopf, P. (2011). Is 100% Renewable Energy possible for Germany by 2020?. *Renewable Energy*. Retrieved from <u>http://www.geni.org/globalenergy/research/renewable-energy-potential-of</u> germany/Germany Final PBMfinal.pdf

Hoodbhoy, P. (2015). Let's go nuclear - safely. Dawn. Retrieved from http://www.dawn.com/news/1169411/lets-go-nuclear-safely

IRENA (2014). Renewable Energy Prospects: China. Remap 2030. Retrieved from http://irena.org/remap/IRENA\_REmap\_China\_report\_2014.pdf

Kamran, M. (2018). Current status and future success of renewable energy in Pakistan. Renewable and Sustainable Energy Reviews, 82, 609-617.

Khalil, S. (2015). Impact of Economic Globalization on sustainable development. Pakistan Journal of Applied Economics, vol. 25(2). Pp. 213-223

Khalil, S. M. (2005). Renewable Energy in Pakistan: Status and Trends. Alternate Energy Development Board. Retrieved from http://www.aedb.org/publications/repk.pdf

Khan, S. R. (2013). Wasting our Enrgy. Dawn Newspaper. Retrieved from http://www.dawn.com/news/780661/wasting-our-energy

Khan, Z. M. (2020). Petroleum imports fall 33 pc in March. Dawn Newspaper. Retrieved from https://www.dawn.com/news/1550423

Khawaja, I. (2018). Vision 2025 score. Dawn Newspaper. Retrieved from https://www.dawn.com/news/1423578

Kripfganz, S., & Schneider, D. C. (2016, July). ARDL: Stata module to estimate autoregressive distributed lag models. In Stata Conference, Chicago.

Mehmood, T. & Ayaz, T. M. (2018). Energy security and economic growth in Pakistan. Pakistan Journal of Applied Economics, vol 28(1). Pp. 47-62

Narayan, P. K., & Smyth, R. (2006). Dead man walking: an empirical reassessment of the deterrent effect of capital punishment using the bounds testing approach to cointegration. Applied Economics, 38(17), 1975-1989.

Pant, G. (Ed.). (2015). India's Emerging Energy Relations: Issues and Challenges. Springer. Retrieved from https://books.google.com.pk/

Raupach, et al., 2007, Global and regional drivers of accelerating CO2 emissions, PNAS, USA, Vol.104(24).

Reuters. (2015). Solar Power for off-grid Homes in KP. Retrieved from <a href="http://www.dawn.com/news/1164507/solar-power-for-off-grid-homes-in-kp">http://www.dawn.com/news/1164507/solar-power-for-off-grid-homes-in-kp</a>

Saeed, A. (2015). Pakistani Farmers Struggle to Switch to Solar Powered Pumps. Dawn. Retrieved from http://www.dawn.com/news/1163146/pakistani-farmers-struggle-to-switch-to-solar-powered-pumps

Shahbaz, M. (2019). Cost of widening electricity gaps. Dawn Newspaper. Retrieved from https://www.dawn.com/news/1481860

Society of Petroleum Engineers [SPE], (2011). Exploration History. Retrieved from http://www.spe.org.pk/history-exploration.asp

Stephenson, J. & Tynan, P. (2010). Is Nuclear Power Pakistan's Best Energy Investment. Nonproliferation Policy Education Centre. Retrieved from http://www.npolicy.org/userfiles/image/s%20Electricity%20Situation\_pdf.pdf Tharparker gets Asia's biggest solar RO plant (2015, January 8), Dawn. Retrieved from http://www.dawn.com/news/1155539/tharparkar-gets-asias-biggest-solar-ro-plant

Woo, W. T. (2004), Serious inadequacies of the Washington Consensus: misunderstanding the poor by the brightest. *Diversity in Development: Reconsidering the Washington Consensus, FONDAD, The Hague*. Retrieved from http://www.cufe.edu.cn/pub/jrxy/docs/2011-04/20110416232332068477.pdf

| . ardl lco2kt gdp_growth lfosil_cons lrenewable_energy, lags(2 2 2 0) aic<br>https://ir.iba.edu.pk/esdcber/2021/day2/16 |                  |               |          |        |            |           |
|-------------------------------------------------------------------------------------------------------------------------|------------------|---------------|----------|--------|------------|-----------|
| ARDL(2,2,2,0) regression                                                                                                | ps://ii.iba.edu. | pk/esucber/20 | 21/uay2/ | 10     |            |           |
| Number of obs = 42                                                                                                      |                  |               |          |        |            |           |
| Sample: 1973 - 2014                                                                                                     |                  |               |          |        |            |           |
| F( 9, 32) = 3205.65                                                                                                     |                  |               |          |        |            |           |
| Prob > F = 0.0000                                                                                                       |                  |               |          |        |            |           |
| R-squared = 0.9989                                                                                                      |                  |               |          |        |            |           |
| Adj R-squared = 0.9986                                                                                                  |                  |               |          |        |            |           |
| Log likelihood = 99.192814                                                                                              |                  |               |          |        |            |           |
| Root MSE = 0.0261                                                                                                       |                  |               |          |        |            |           |
|                                                                                                                         |                  |               |          |        |            |           |
| lco2kt                                                                                                                  | Coef.            | Std. Err.     | t        | P>t    | [95% Conf. | Interval] |
|                                                                                                                         |                  |               |          |        |            |           |
| lco2kt                                                                                                                  |                  |               |          |        |            |           |
| L1.                                                                                                                     | 0.723108         | 0.116244      | 6.22     | 0.000  | 0.4863262  | 0.959889  |
| L2.                                                                                                                     | 0.253163         | 0.108356      | 2.34     | 0.026  | 0.0324492  | 0.473877  |
|                                                                                                                         |                  |               |          |        |            |           |
| gdp_growth                                                                                                              |                  |               |          |        |            |           |
| •                                                                                                                       | 0.002698         | 0.002683      | 1.01     | 0.322  | -0.002767  | 0.008163  |
| L1.                                                                                                                     | 0.000579         | 0.002986      | 0.19     | 0.847  | -0.0055024 | 0.00666   |
| L2.                                                                                                                     | 0.004894         | 0.002403      | 2.04     | 0.05   | -1.84E-08  | 0.009788  |
|                                                                                                                         |                  |               |          |        |            |           |
| lfosil_cons                                                                                                             |                  |               |          |        |            |           |
| -                                                                                                                       | 0.781739         | 0.267539      | 2.92     | 0.006  | 0.2367805  | 1.326698  |
| L1.                                                                                                                     | 0 0000           | 0 220704      | 0 00     | 0 205  | 0 0000000  | 0 201001  |
| 12                                                                                                                      | -0.2983          | 0.338794      | -0.00    | 0.385  | -0.9883983 | 0.391801  |
| L2.                                                                                                                     | -0.39488         | 0.290512      | -1.36    | 0.184  | -0.9866304 | 0.196878  |
|                                                                                                                         |                  |               |          |        |            |           |
| Irenewable_energy                                                                                                       | 0.0040-          | 0.004450      | 0.04     | 0.074  | 0.0744000  | 0.000000  |
|                                                                                                                         | -0.00175         | 111134458     | -()()/1  | 11 4/1 | -0 0714383 |           |

Published by iRepository, 2021